Problems

Problem 2.1 Determine the domain of the following functions:

(i)
$$f(x) = \frac{1}{x^2 - 5x + 6}$$
;

$$(v) f(x) = \frac{1}{1 - \log x};$$

(ii)
$$f(x) = \sqrt{1 - x^2} + \sqrt{x^2 - 1}$$
;

(vi)
$$f(x) = \log(x - x^2);$$

(iii)
$$f(x) = \frac{1}{x - \sqrt{1 - x^2}};$$

(vii)
$$f(x) = \frac{\sqrt{5-x}}{\log x}$$
;

(iv)
$$f(x) = \sqrt{1 - \sqrt{4 - x^2}}$$
;

(viii)
$$f(x) = \arcsin(\log x)$$
.

Problem 2.2

- (a) If f and g are both odd functions, what are f + g, fg, and $f \circ g$?
- (b) And what are the same functions if now f is even and g is odd?

Problem 2.3 Check whether the following functions are even or odd:

(i)
$$f(x) = \frac{x}{x^2 + 1}$$
;

(iv)
$$f(x) = \cos(x^3)\sin(x^2)e^{-x^4}$$
;

(ii)
$$f(x) = \frac{x^2 - x}{x^2 + 1}$$
;

(v)
$$f(x) = \frac{1}{\sqrt{x^2 + 1} - x}$$
;

(iii)
$$f(x) = \frac{\sin x}{x}$$
;

(vi)
$$f(x) = \log(\sqrt{x^2 + 1} - x)$$
.

Problem 2.4 For which numbers $a, b, c, d \in \mathbb{R}$ the function $f(x) = \frac{ax + b}{cx + d}$ is its own inverse (i.e., $f \circ f = \text{Id}$) in the domain of f?

Problem 2.5 Check that the function $f(x) = \frac{x+3}{1+2x}$ is bijective and maps its domain $\mathbb{R} - \{-1/2\}$ to $\mathbb{R} - \{1/2\}$.

Problem 2.6

(a) Determine which of these functions are injective. For those that are obtain their inverse. For those that are not, find two points with the same image.

(i)
$$f(x) = 7x - 4$$
;

(v)
$$f(x) = x^2 - 3x + 2$$
:

(ii)
$$f(x) = \sin(7x - 4)$$
;

(vi)
$$f(x) = \frac{x}{x^2 + 1}$$
;

(iii)
$$f(x) = (x+1)^3 + 2$$
;

(vii)
$$f(x) = e^{-x}$$
;

(iv)
$$f(x) = \frac{x+2}{x+1}$$
;

(viii)
$$f(x) = \log(x+1)$$
.

- (b) Prove that $f(x) = x^2 3x + 2$ is injective in $(3/2, \infty)$. (c) Prove that $f(x) = \frac{x}{x^2 + 1}$ is injective in $(1, \infty)$ and find $f^{-1}(\sqrt{2}/3)$.
- (d) Determine if those same functions are surjective and bijective in their domains.

Problem 2.7 Calculate:

(i)
$$\arctan \frac{1}{2} + \arctan \frac{1}{3}$$
;

(iii)
$$\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$$
.

HINT: Calculate the tangent of those expressions using the formula for the tangent of the sum and paying attention to the signs.

Problem 2.8 Simplify the following expressions:

Problems 31

(i) $f(x) = \sin(\arccos x);$ (iv) $f(x) = \sin(2\arctan x);$ (ii) $f(x) = \sin(2\arctan x);$ (v) $f(x) = \cos(2\arctan x);$ (iii) $f(x) = \tan(\arccos x);$ (vi) $f(x) = e^{4\log x}.$

Problem 2.9 Solve, for x, y > 0, the system of equations

$$\begin{cases} x^y = y^x, \\ y = 3x. \end{cases}$$

Problem 2.10

(a) Describe the function g in terms of f in the following cases ($c \in \mathbb{R}$ is a constant):

$$\begin{array}{lll} \text{(i)} & g(x) = f(x) + c; & \text{(v)} & g(x) = f(|x|); \\ \text{(ii)} & g(x) = f(x+c); & \text{(vi)} & g(x) = |f(x)|; \\ \text{(iii)} & g(x) = f(cx); & \text{(vii)} & g(x) = 1/f(x); \\ \text{(iv)} & g(x) = f(1/x); & \text{(viii)} & g(x) = [f(x)]_+ \equiv \max\{f(x), 0\}. \end{array}$$

- (b) Plot the functions when $f(x) = x^2$.
- (c) Plot the functions when $f(x) = \sin x$.

Problem 2.11 Sketch, using the least possible calculations, the graph of the following functions:

(i)
$$f(x) = (x+2)^2 - 1$$
; (vii) $f(x) = \sqrt{|x| - x}$; (viii) $f(x) = \sqrt{4 - x}$; (viii) $f(x) = x^2 + \frac{1}{x}$; (vi) $f(x) = \frac{1}{1 + x^2}$; (v) $f(x) = \min\{x, x^2\}$; (vi) $f(x) = |e^x - 1|$; (viii) $f(x) = \sqrt{|x| - x}$; (viii) $f(x) = \frac{1}{\lfloor 1/x \rfloor}$; (viii) $f(x) = |x^2 - 1|$; (viii) $f(x) = |\cos(x^2 - 1)$; (viii) $f(x) = |\cos(x^2 - 1)|$; (viii) $f(x) = x\sin(1/x)$.

HINT: In (viii) $\lfloor x \rfloor$ denotes the integer part of x, i.e., the largest integer $n \leqslant x$.

Problem 2.12

- (a) Prove that $\cosh x$ is even and $\sinh x$ is odd.
- (b) Prove the identities $\cosh^2 x \sinh^2 x = 1$ and $\sinh(2x) = 2\sinh x \cosh x$.